23 research outputs found

    Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks

    Get PDF
    Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types

    Safety and efficacy of bempedoic Acid to reduce LDL cholesterol

    No full text
    BACKGROUND Short-term studies have shown that bempedoic acid, an inhibitor of ATP citrate lyase, reduces levels of low-density lipoprotein (LDL) cholesterol. Data are limited regarding the safety and efficacy of bempedoic acid treatment in long-term studies involving patients with hypercholesterolemia who are receiving guideline-recommended statin therapy. METHODS We conducted a randomized, controlled trial involving patients with atherosclerotic cardiovascular disease, heterozygous familial hypercholesterolemia, or both. Patients had to have an LDL cholesterol level of at least 70 mg per deciliter while they were receiving maximally tolerated statin therapy with or without additional lipid-lowering therapy. (Maximally tolerated statin therapy was defined as the highest intensity statin regimen that a patient was able to maintain, as determined by the investigator.) Patients were randomly assigned in a 2:1 ratio to receive bempedoic acid or placebo. The primary end point was safety, and the principal secondary end point (principal efficacy end point) was the percentage change in the LDL cholesterol level at week 12 of 52 weeks. RESULTS The trial involved 2230 patients, of whom 1488 were assigned to receive bempedoic acid and 742 to receive placebo. The mean (±SD) LDL cholesterol level at baseline was 103.2±29.4 mg per deciliter. The incidence of adverse events (1167 of 1487 patients [78.5%] in the bempedoic acid group and 584 of 742 [78.7%] in the placebo group) and serious adverse events (216 patients [14.5%] and 104 [14.0%], respectively) did not differ substantially between the two groups during the intervention period, but the incidence of adverse events leading to discontinuation of the regimen was higher in the bempedoic acid group than in the placebo group (162 patients [10.9%] vs. 53 [7.1%]), as was the incidence of gout (18 patients [1.2%] vs. 2 [0.3%]). At week 12, bempedoic acid reduced the mean LDL cholesterol level by 19.2 mg per deciliter, representing a change of −16.5% from baseline (difference vs. placebo in change from baseline, –18.1 percentage points; 95% confidence interval, –20.0 to –16.1; P<0.001). Safety and efficacy findings were consistent, regardless of the intensity of background statin therapy. CONCLUSIONS In this 52-week trial, bempedoic acid added to maximally tolerated statin therapy did not lead to a higher incidence of overall adverse events than placebo and led to significantly lower LDL cholesterol levels. (Funded by Esperion Therapeutics and the NIHR Imperial Biomedical Research Centre; CLEAR Harmony ClinicalTrials.gov number, NCT02666664.
    corecore